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On the critical behaviour of superfluid Fermi liquids 
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Abstract. The influence of Fermi liquid Landau-type interactions on the critical behaviour 
of superconductors and superfluids in the presence of DC magnetic fields and superflows is 
studied. Paramagnetic and diamagnetic instability phenomena are described in detail for 
singlet s- and triplet p-paired superconducting Fermi liquids. The impact of Landau inter- 
actions on both instability effects is found to be significant. Inhomogeneous Larkin-Ovch- 
innikov superfluid states are also considered in the case of strongly interacting systems. 
The influence of Landau interactions on critical depairing superflows for s- and p-paired 
superfluids is determined. Applications of the results obtained to the description of super- 
conductors, superfluid 3He and 3He-4He mixtures as well as the rare earth ternary compound 
ErRh,B, are discussed. 

1. Introduction 

Recent experimental developments with new superconducting materials, such as the 
heavy-fermion superconductors, rare earth ternary compounds and high-T, super- 
conductors, have increased the interest in theoretical studies of various modifications of 
the simple BCS model. One important possibility is the inclusion of interactions in the 
particle-hole channel leading to Fermi-liquid-type corrections. These corrections do 
not manifest themselves as renormalisation constants only, but despite common opinion, 
they essentially influence the ground state of the system, as will be demonstrated in this 
paper. In the presence of external fields (of the order of the energy gap) the equilibrium 
state of a superfluid Fermi liquid (SFL) appears to be highly sensitive to the magnitude 
of the appropriate part of the quasi-particle Landau-type interaction. This field can be 
considered as a DC magnetic field that acts on the particles via both Pauli and orbital (for 
charged systems) terms in a free-particle Hamiltonian. The relative smallness of this 
field in comparison to the Fermi energy is, however, necessary when we neglect the field 
dependence of the Fermi liquid and pairing interactions (the neglect of these corrections 
is consistent with the accuracy of the weak coupling theory of superconductors). 

With regard to the DC magnetic field, both its paramagnetic and diamagnetic actions 
on quasi-particles are ‘dressed’ with appropriate moments of Landau interaction which 
influence the critical behaviour of the superconducting state. For neutral singlet s- 
and triplet p-type superfluid Fermi liquids (s-SFLS, p-SFLS) , the so-called paramagnetic 
instability phenomenon (Maki and Tsuneto 1964, Sarma 1963) is highly sensitive to the 
spin-exchange Landau interaction. For the S-SFL state and bo > 1.195 (bo is the isotropic 
part of the spin-exchange quasi-particle interaction) the paramagnetic instability 
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phenomenon is completely damaged and the superfluid-normal phase transition is of 
second order on the whole critical curve. For -1 < bo < 1 the usual Maki-Tsuneto- 
Sarma critical behaviour is observed with a single tricritical point, while for 
1 < bo < 1.195 two tricritical points exist. A similar property also holds for p-SFL, 
although a more complicated order parameter structure manifests itself in energy com- 
petition between a variety of possible superfluid states. The relevant considerations are 
presented in 30 1 and 2. 

With regard to superfluid 3He-B, for which the weak coupling approach to a p-paired 
condensate is applicable, analyses of the magnetic properties of 3He-B have been 
made, e.g., Jacak (1981), Gonczarek and Jacak (1978), Hasegawa (1980), Tewordt and 
Schopohl(1979), Schopohl(l982) and McInrney (1980,1981). Numerical solutions have 
been found for Landau parameters specific to 3He (Schopohll982) and therefore they 
do not reveal the typical p-paired Fermi liquid polycritical behaviour associated with 
other interaction parameter values. 

In order to state whether the determined polycritical points are real tricritical points 
or Lifshitz points, inhomogeneous states are also considered. The stability of the so- 
called Larkin-Ovchinnikov (LO) state (Larkin and Ovchinnikov 1964, Fulde and Ferrell 
1964) also turns out to be strongly affected by the spin-exchange Landau interaction. 
For S-SFL it is established in 0 3 that for - 1 < bo < -0.122 the LO state does not minimise 
the free energy at any DC magnetic field value, while for -0.122 < bo < 3.40, at certain 
magnetic field values, a first-order phase transition BCS-LO occurs (for bo > 3.40 it is a 
second-order phase transition). The positive value of bo also enhances the energetical 
distances between stable LO and unstable BCS or normal states. Recall that for an s-paired 
Fermi gas the appropriate energetical distances are very small and can be easily cancelled 
by spin-orbit impurity scattering (Takada 1970, Aslamazov 1969). The analysis in 0 1- 
3, although complete for a neutral SFL, cannot generally be applied to the description of 
real electronic superconductors (note, however, that p-SFL is a good model for superfluid 
3He) because the orbital depairing action of the magnetic field usually greatly exceeds 
the similar action of the Pauli term. Thus diamagnetic effects play a dominant role in 
real electronic materials with regard to their superfluid properties. The so-called Pauli- 
limiting field, which is used in the evaluation of the upper critical field for type I1 
superconductors (Alexander et aZl985), should be considered as an approximation only. 
Note, however, that for Kivelson’s interpretation of the Anderson resonating valence 
band state (with regard to high-T, superconductors), the uncharged fermionic solitons 
can condense into neutral SFLS for which paramagnetic effects would be important. 

Some superconducting materials have magnetic admixtures, in which the para- 
magnetic depairing mechanism is important. The reason for this is the enlargement of 
the effective Bohr constant due to the ferromagnetic alignment of admixture spins, as 
in the system considered by Fujita et a1 (1984). This system, known as a magnetically 
polarisable superconductor, can be used as a model to explain the critical behaviour in 
the rare earth ternary compound ErRh4B4. However, due to the interplay of magnetism 
and superfluidity in ErRh4B4, some modification of the paramagnetic theory is needed. 
In 0 6 we evaluate bo in order to fit the position of the cross-over point for ErRh4B4 
according to the experimental results of Grabtree et aZ(l982). 

On the other hand, the description of the paramagnetic critical behaviour of the 
singlet-paired superfluid system forms an appropriate model for the magnetic properties 
of superfluid 3He in the mixture 3He-4He where the singlet-type pairing interaction 
seems to be favourable due to the bosonic medium of 4He atoms. Unfortunately, 
experimental evidence for this superfluidity has not been yet obtained, probably because 
of the very low transition temperature of K (Ivanova and Mejerovich 1986). 
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In the case of the usual charged superconductors the situation is different. Since 
the canonical momentum operator is non-local (containing the magnetic field vector 
potential), the inclusion of the orbital magnetic term is inconvenient (in momentum 
representation). Nevertheless, the essential simplification is justified in the London limit 
when the DC magnetic field penetration depth considerably exceeds the coherence length 
of the superconducting state. This simplification consists in the assumption that the 
superfluid velocity (the gauge-invariant combination of the vector potential and gradient 
of order parameter phase) is spatially uniform. Moreover, due to the uniqueness of the 
distance scale, governed in the London limit by the coherence length, one can consider 
the superfluid velocity to be of the order of E&,  where E o  is the coherence length in 
interatomic distance units, andh = PBH, where His  the magnetic field. Usually in metals 
go 102-104, so that the Pauli term (of the order of h) appears to be completely negligible 
(although for high-T, Cu oxides E,, is considerably less and the Pauli term seems to be 
much more important). Thus the depairing action of the orbital term (treated even in 
the framework of the London limit) is crucial with regard to the magnetic properties of 
ordinary superconducting metals. For the case of a superfluid Fermi liquid when the 
electronic interaction is taken into account, one important observation is that the 
superfluid velocity U ,  (as well as the magnetic field potential) is ‘dressed’ with an inter- 
action via the vector part of a spinless Landau function (as is the effective mass renor- 
malisation). This is due to the vectorial nature of v,  (note that the magnetic field entering 
via the Pauli term is ‘dressed’ with a spin exchange interaction as the pseudovector). 
The diamagnetic critical effects for both S-SFL and p-SFL are considered in § 5 .  The 
diamagnetic instability phenomenon is described by analogy with the paramagnetic one. 
Note, however, that the polycritical behaviour is completely destroyed by quasi-particle 
interaction with a ,  > -3 (m* = m(l + a l )  is the effective mass formula for the isotropic 
case). This explains why the diamagnetic instability phenomenon was not known for a 
simple BCS gas. 

Finally, we emphasise that considerations of the orbital action of a DC magnetic field 
in the framework of the local (i.e., London) limit also provide an adequate model of the 
states of a neutral SFL with superflows, which in the case of p-SFL are applicable to the 
description of 3He (of its B phase at least, since for the A phase the strong coupling 
correction needs to be taken into account; see Vollhardt eta1 1980). We have found that 
the critical superflow is affected by the Landau interaction, in contrast with earlier 
opinion. This influence manifests itself since the first-order phase transitions to normal 
phase do not allow the superflow to attain its maximal value. This important property 
occurs for some regions of a,  values, for both s- and p-SFLS. 

2. Paramagnetic critical properties of neutral S-SFLS 

Let us consider a neutral SFL with singlet s-type pairing (S-SFL) in the presence of a DC 
magnetic field of the order of Tc/pB. In the framework of the weak coupling approach 
one can find self-consistent equations for the anomalous and normal parts of the mass 
operator, which coincide with the gap parameter and renormalisation of the para- 
magnetic term (the Pauli term in the Hamiltonian), respectively. The explicit forms of 
the equations are as follows (cf. Jacak and Krzyianowski 1985): 

+ tanh - 
2T 

A = ;Ail ] ~ l  d Q  w~ d E i  ( t a n h F  E + H  
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X@) = -; b1(21+ 1) - P , @ * @ ' ) A  
1=0,2. . . .  i 2' 

2T 
E + H  

x JOw d 5 (tanh 2~ - tanh - 

where A = N g o  is the pairing constant, bl = Nofa are the dimensionless spin-exchange 
Landau parameters, and N o  is the density of states at the Fermi surface. We consider 
the isotropic system, so that in equation (2) the expansion of the Landau function in 
Legendre polynomials has been applied: 

1 f"'"'(@ 8') = 7 ~ . I f s ' " P 1 ( f i  - 8'). 

The renormalised magnetic field H = h + X. It can be seen that for the paramagnetic 
spin magnetisation M the following holds: 

The above system of equations is unmanageable at arbitrary temperatures, although at 
T = 0 it can be solved analytically. Let us first consider T = 0 limit, in which case 
equations (1) and (2) have the following form (provided the hypothetical possibility of 
a spontaneous breakdown of rotational symmetry is not considered): 

(4) 

= -b,O(H - A)(H2 - A* ) V2 ( 5 )  
where 0 is the Heaviside step function. Equations (4) and ( 5 )  can be readily solved and 
the explicit expressions for A and t: are 

for h 2 h2 

f o r h s A ,  

X = -bo& (h - AO)/(bO - 1) forh,  s h s h 2  (7) t,: + bo) for h 2 h2 
where 

h l  = min(Ao, Ao(l  + b0) /2 )  hz = max(Ao, Ao( l  + b0)/2) .  (8) 
Here A. = A(T = 0, h = 0) = nT,/e' and c = 0.577 is the Euler constant. 

From equations (6) and (7) it follows that the condition bo = 1 determines the 
irregular point of the system (4) and ( 5 )  where the topology of its solution changes. That 
is, for bo > 1 there exist unique non-zero solutions, while for -1 < bo < 1 two branches 
of non-zero solutions are available. Thus the point given by the conditions T = 0, bo = 
1, h = A. is the bifurcation point of the system of non-linear equations (4) and (5). From 
the physical point of view this point coincides with the tricritical point (at T = 0) at which 
the superfluid-normal phase transition changes its order. For bo > 1 it is a second-order 
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phase transition and for - 1 < bo < 1 first-order. The appropriate critical field (for the 
first-order phase transition) can be found by evaluating the field at which the energetical 
distance between superfluid and normal phase vanishes (similar to the first-order phase 
transition in a van der Waals gas). The difference in free energies of normal and superfluid 
phases can be found using the general Feynman method (i.e., integration with respect 
to interaction constants). The appropriate formula is 

(9) 2T 
+ v / x x  d H ' [ X ' + + / o m d 6 ( t a n h y - t a n h -  E + H  

N 

where FS,h (FN,h) is the free energy of the SFL (NFL is a normal FL) in the presence of a 
magneticfield: E' = (E2 + Ar2)l l2 ,H'  = h + X', v = -?L/bo and& = -boh/(l + bo). 

In the limit T = 0, equation (9) assumes the simple form: 

F S , h  - F N , h  = $?L {- A2/2 4- H 2  4- @ ( H  - A)(H2 - A2)l12 - [bo/(l bo)] 

x [h + X(1  + b0)/b0]2}. (10) 

Taking into account equations (6). (7) and (10) we find that for -1 < bo < 1 the stable 
solution is the step function 

A = Ao, X = 0 

A = 0 , X  = X N  

for 0 G h < Ao[(l + bo)/2]'12 

for h > Ao[(l + bo)/2]'/2. 

At h = Ao[(l + b0)/2l1I2 the first-order superfluid-normal phase transition is realised 
(T  = 0). For bo > 1 the solution (6) and (7) is stable within the whole region of deter- 
mination and the phase transition to the normal state is of the second order. 

For non-zero temperatures only a numerical analysis is available. For several tem- 
peratures the solutions to equation (1) are plotted in figure 1. For bo = 0 they correspond 
to A(h),since for bo= 0, H =  h. For bo#O, however, equation (2) appears to be 
important, leading to a considerable change in the typical behaviour of a BCS gas 
described by Sarma (1963) and Maki and Tsuneto (1964) known as a paramagnetic 
instability phenomenon. They have determined the position of the tricritical point for a 
BCS gas, i.e., for bo = 0: T* = 0.556Tc and h* = 0.540A0. 

For the BCS Fermi liquid the position of the tricritical point is highly sensitive to 
variations in bo. It is convenient to account for this impact by determining the bifurcation 
points of the system (1) and (2). The necessity condition for irregular points of the system 
(1)-(2) leads to the following equation: 

{ IouD d c  [+ ( tanhA+ + tanh A - )  - - + 
2TE2 cosh2A+ cosh2A- 

1 + [ + 2 lom E & ( cosh2 A + cosh2 A - 

- 1 +' 2 [lom dE??k (cosh2A+ 

where Ai = ( E  * H)/2T. Taking this equation in the limit A + 0 one can determine 
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H/Ao  
- 0 5  0 05 1 0  

Figure 1. Solutions to the gap equation (1) A = 
A ( H )  at various temperatures. 

Figure 2. Coordinates of the tricritical point for 
an s-type superfluid Fermi liquid: T* (full curve) 
and h* (broken curve) versus bo. Corresponding 
branches of both curves are denoted by the same 
letters. 

the bifurcation points corresponding to the tricritical points on the phase transition 
curve. As a result the coordinates of the tricritical points versus bo are plotted in figure 
2 .  Three types of behaviour are possible. For -1 < bo < 1 there is only one tricritical 
point with coordinates T* (bo) and h* (bo) in which the transition to normal phase 
changes its order: first order for 0 < T < T*,  and second order for T* < T < T,. For 
1 < bo < 1.195 there are two tricritical points with coordinates T $  ( b o ) ,  hT ( b o )  and 
T; ( b o ) ,  h ;  ( b o )  (see figure 2 ) .  The phase transitions are second order for 0 S T < T $  
and T; < T < T, (Tf < T; ) and first order for T $  < T < Tz  . For bo > 1.195 no poly- 
critical point appears and the phase transition is second order for all 0 < T s T,. Hence 
in the region bo > 1.195 the quasi-particle Landau-type interaction completely destroys 
the paramagnetic instability phenomenon. 

Phase diagrams typical for the above three cases (bo = 0.30, 1.05 and 1.20) are 
presented in figure 3 .  The appropriate critical curves (full lines) corresponding to first- 
order phase transitions are determined by evaluating the free energy according to 
equation (9). The broken and dotted lines correspond to ‘superheating’ and ‘super- 
cooling’ fields, respectively. 

3. Paramagnetic critical properties of p-SFL 

For triplet p-type pairing we deal with a much more complicated structure of the 
superconducting phase order parameter than that for S-SFL. The appropriate 3 X 3 
complex matrix order parameter can be represented by suitably chosen spin tensors 
corresonding to appropriate irreducible representations of the rotational group. For the 
case where an external DC magnetic field is present this representation is especially 
convenient since the axial rotational symmetry along the field axis is maintained. Thus 
the Cooper pair states can be classified by means of the quantum numbers m; for the 
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Figure 3. Phase diagrams Tversus h for (a) bo = 0.30, ( b )  bo = 1.05 and (c) bo = 1.20. 

p-triplet states we have m = 0 , 1 , 2 .  The three-dimensional m = 0 case is most important 
because of its relation to the order parameter of superfluid 3He-B, which can also be 
described in the framework of weak coupling theory. If we denote by q the versor of the 
magnetic field, then the m = 0 type state can be represented as 

A = ( d l S o l m a , )  

d,  = A1 cos O ( S ,  - qrqs )  + A,4,qs + A1 sin O&,pjl (12) 

where A1 and A2 are longitudinal and transverse gap amplitudes, respectively, and the 
angle 0 describes the orientation of the spin and momentum spaces. Taking into 
account representation (12) one can write the self-consistent equations for the gap and 
renormalised magnetic field (cf. Schopohl 1982); here we have restricted ourselves to 
isotropic spin-exchange quasi-particle interaction: 

1 t anh( E + /2 T) t anh( E - /2 T )  + 
E ,  E -  Al  = 8AA1 dx (1 - x2) loo d 5  ( 

2 T  
dx x2 Iou ( M +  tanh - + M -  tanh - E+ 1 

A’ = $AA2 2 T  

2T 
2 = + b o j 1  d x j b ; d E ( - M +  tanh-+M- E ,  tanh- 

2 T  -1 

where 

E = ( E 2  + A : x ’ ) ~ / ~  E ,  = [ ( E  f H)’ + Al(1 - x ~ ) ] ~ ’ ~ .  

Also M ,  = ( E  ? H)E;’ and A = Nog, is the pairing constant. 
According to the structure of these equations, three types of solutions are possible: 

the ID axial state (Al  = 0, A, # 0), the 2D planar state (A, = 0 ,  Al  # 0) and the BW 
anisotropic state (Balian and Werthamer 1963; with A 1  # 0, A, # 0). While the ID state 
is completely energetically unfavourable, the competition between BW anisotropic and 
ZD states leads to a stabilisation of the BW state for H < H,  (Hi s  the effective field) and 
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0 0 2  0 4  0 6  
- 1  

H/Aq 

Figure4. A( H )  functions forBw anisotropic, polar 
ID and planar ZD states ( T  = 0). 

1 8 1  
I 0 2  0 4  06 

h/Ao 

Figure 5. Free energies 6 F  as functions of H for 
BW anisotropic, ID and ZD states ( T  = 0). 

Figure 6. Coordinates of the tricritical points for 
the BW-ZD transition. 

the ZD state for H > H, (cf. figures 4 and 5) .  This stabilisation of the ZD state in the vicinity 
of T, has been described by Hasegawa (1980), Tewordt and Schopohl (1979), Jacak 
(1981), and figures 4 and 5 are similar to those in Schopohl(l979); the same is so in the 
case of figures 1 and 3(c). The ZD state is field-independent in the framework of the weak 
coupling theory. Moreover, other states with m = 1 or m = 2 are unstable within the 
weak coupling approach (similar zero-field limit). Therefore, only the phase transition 
BW  ani isotropic)+^ is of physical interest (in the weak coupling theory). As in the case 
of S-SFL, here we also deal with the paramagnetic instability phenomenon for this 
transition. By solving the appropriate bifurcation type condition, in analogy with the 
consideration in 0 2, we can determine the tricritical point coordinates on the BW-2D 
transition curve. These coordinates are plotted against bo in figure 6. 
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In summary, we can state that for -1 < bo < 1.51 a single tricritical point exists, 
while for 1.51 6 bo < 1.65 two tricritical points exist. For bo > 1.65 the paramagnetic 
instability phenomenon disappears entirely. Application of the above analysis to the 
superfluid 3He, for which bo = -0.7, shows that its behaviour corresponds to the first 
region of bo, so that paramagnetic instability should occur for 3He-B with a tricritical 
point at T* = 0.814Tc, h* = 0.078A0. Nevertheless it is well known that the strong 
coupling corrections qualitatively change the He3 phase diagram and would disturb this 
paramagnetic instability for B W - 2 ~  by removing the degeneration of two-dimensional 
states and by stabilising the ABM phase (cf. Leggett 1975). 

4. The inhomogeneous Lo-type state for S-SFLS 

It is known that in the neutral BCS gas in the presence of a magnetic field, the inhomo- 
geneous superfluid state appears to be more stable (at a particular magnetic field value) 
than the usual BCS state (Larkin and Ovchinnikov 1964, Fulde and Ferrelll964). In the 
case of SFLS, however, the stability of the LO state is also very sensitive to the magnitude 
of the spin-exchange quasi-particle interaction. In order to demonstrate this let us collect 
a self-consistent system of equations for the anomalous and normal parts of the mass 
operator, i.e., for the gap and renormalised magnetic field, supplemented with the Bloch 
condition which guarantees that the total current will vanish (cf Takada and Izuyama 
1969). These equations have the form 

P + - {If(E, + H + 2) +fW, - H + z)1(1 + E p / E p )  ?(  3 
+ I f ( - E ,  - H + z ) + f ( - E ,  - H + . ~ ) ] ( l - l j ~ / E ~ ) } = 0  (18) 

where A, denotes the amplitude of the gap, the spatial inhomogeneity of which is 
determined by the q momentum vector. Moreover 

E, = (6; + A;)lI2 W , = H + z  z = (a/2)p * q ff = qvF. 

Let us now consider the T = 0 limit, when the integrals in equations (16)-(18) can 
be solved explicitly. In this limit the system (16), (18) takes the form: 

+ O ( - C  - A,) 
c- + D -  

O(C- - A,)  
A, 

+ .+!I i 4 
c+ + D +  + D -  + O ( C +  - A , )  

C-  + D -  

As 



3532 L Jmak 

H / A ,  

Figure 7. Solutions to equations (19, 21) for (i) 
Aq(H), (ii) m(H) and (iii) Z/bo(H). A, B. C 
denote corresponding branches of the solutions. 
Thecoordinates H/Ao, A,/Ao, CY/A,,, X/bo/Aoare 
0.754,0.0,1.810,0.754,0.634,0.556,1.426,0.412 
and 1.0, 1.0, 0.0, 0.0 for A, B, C, respectively 
(T=O) .  

C - D -  A; - C - + D -  
( +-ln 

2 4 
+O(-C-  - A s )  - 

(C.;D+ 4 A2 In C+ + D + ) ]  
2 As 

+ O(C+ - Aq) -- 

C-  + D -  
$0: - C - D - H +  H A ;  In 

As 
-C-  + D -  + o(-c- - A ~ )  (-301 + c-D-H + HA;  In 

Aq 

c+ + D+ll  -303 + C + D + H  - H A :  In 
Aq 

where C+ = H k a /2 ,  D i  = (C$ - A;)’’’ and O(x) is Heaviside step function. The 
step functions in equations (19)-(21) describe, in the formal manner, the ‘blocking’ 
effects essential for the LO state, and that exhibit the interplay between the depairing 
action of the magnetic field and superflow. 

Note that bo explicitly enters equation (20),  while equations (19) and (21) can be 
solved in terms of H. This allows the functions Aq = Aq(H), a = a ( H )  and X/bo = 
Z/b,(H) to be determined numerically ( --N0X/bo is the spin magnetisation of the 
system), and are plotted in figure 7. Note also that the critical magnetic field H,  and 
critical value of a, a, (i.e., the coordinates of the point A in figure 7) can be found from 
equations (19) and (21) ,  both taken in the limit As+ 0, i.e., 
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From these equations one can find Hc = 0.754A0 and ac = 1.810A0, where Aois the BCS 
gap for T = h = 0. The position of point C in figure 7 is determined by the appropriate 
Bcs-type equation, i.e., it corresponds to the a+ 0 limit. The coordinates of point B 
can be found by employing the condition ah/aAq = 0. 

The curves plotted in figure 7 constitute a complete (at T = 0) Lo-type solution for 
bo = 0 (since in this case H = h). For arbitrary bo # 0, these curves could be easily 
transformed into the appropriate Aq = A,(h) and a = a(h) via renormalisation of the 
abscissa according to H = h + C. 

The crucial point in the description of this system lies in the evaluation of the free 
energies of normal, BCS and LO states at the same h ,  since it will reflect the energetical 
competition between these states. In order to calculate the free energy of inhomogeneous 
SFLS one can use the integration of the self-consistent equation with respect to the 
interaction constants. In the limit T = 0 the appropriate formula takes the form 

6 F =  FiL0’(h, (U) - F,(h) = (A/2){-Ai/2 + H2 + a2/12 

+ (1/3a)[O(C- - Aq)D? - O(-C- - A,)D? - O(C+ - Ah,)D:] 

where FkLo), FN are the free energies of superfluid LO and normal states in the presence 
of a magnetic field, respectively. Let us define 

This function in the stationary points (i.e., following the solutions from figure 7) is 
plotted in figure 11. Note that 6F(h,  bo = 0) = 6Fo(H) .  To evaluate the free energy 
6F(h)  (for bo # 0) one can use the numerical results for 6Fo(H)  and 8 / b o ( H ) ,  and the 
condition H = h + 8. 

Due to equation (24) one can ensure (taking the limit Aq + 0) that the LO state (with 
a # 0) is energetically more favourable than the normal state provided that bo > -0.774 
only. The explicit form of the condition for this limiting value of bo is as follows: 

On the other hand, it is necessary to compare the free energy of the LO state with 
that of the BCS state. The free energy of the latter is given by formula (10) (with equations 
(6) and (7)). It can be established that there are two regions of bo, with the distinct 
behaviour of the system. To be specific, for -1 < bo < -0.122 the stable superfluid state 
is of the BCS type and exists for 0 s h < Ao[(l + bo)/2]”2. In this case the LO state does 
not minimise the free energy at all. For the region -0.122 < bo S 3.40 we observe the 
stable BCS state for 0 s h < hLO, and for hLo < h < Hc(l + bo) the stable state is of LO 
type (for h > Hc(l + bo) stable is the normal state). The phase transition BCS-LO (at h = 
hLo) is here first order, while the transition Lo-normal is second order. However, if bo 
exceeds 3.40, the jump in the gap (and magnetisation) at h = hLo becomes less than 

Ao. Thus from the physical point of view it is irrelevant to distinguish between first- 
and second-order phase transitions at this point. The jump in the gap 6 A  = A. - Aq(h = 
hLO) and in the appropriate a 6a = - a(h = hLo) are plotted in figure 8, and the function 
hLo(b0) is plotted in figure 9. 

For bo = 4 (which value is assumed for Al), the solution A,(h) is presented in figure 
10, and the appropriate free energy is plotted in figure 11. Note that the Landau 
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Figure 8. The jump in the gap 6 A  = A. - A,(h = 
hLO) and the jump in LY parameter 6cr = - cr (h  = 
hLo) at the first-order BCS-LO phase transition. 
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Figure 10. Energy gap as a function of h for bo = 
4. 

Figure 9. Critical magnetic field for the BCS-LO 
phase transition hLO versus bo. 
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Figure 11. Free energy 6 F  = Fs - FN as a function 
of h for bo = f; the free energy 6Fo at its stationary 
points as a function of H. 

parameter bo influences not only the stability range of the LO state, but also changes 
(enhances for bo > 0) the energetical distance between LO and BCS (or normal) states 
(cf. figures 9 and 11). In this context the inclusion of impurity scattering (Takada 1970, 
Aslamazov 1969) always diminishes the stability of the LO state. 
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5. Orbital depairing action of the magnetic field for s- and p-SFL 

The orbital depairing action of the magnetic field cannot be generally discussed without 
considerable modification of the superfluid state order parameter, i.e., one has to 
consider the inhomogeneous gap parameter. Although the general Gorkov equations 
can be written in the position space for the inhomogeneous case the solutions are known 
only in the framework of linear approximation (this also holds for the phenomenological 
Landau-Ginzburg-type approach). These problems are due to the inconvenience of 
position representation. Nevertheless, in the local limit, when the superfluid velocity is 
assumed to be spatially uniform, the usual momentum representation can be applied 
with a diagonal one-particle Green function. This limit, also known as the London limit, 
is a realistic approximation for superconductors with magnetic field penetration depths 
exceeding the coherence length. Thus it suffices to describe the Meissner phase (and 
even mixed state, but not close to the H,, field) of type I1 superconductors; cf. Svidzinskii 
(1982). This circumstance makes the local limit interesting from physical point of view, 
and its inherent simplicity allows efficient discussion of Fermi liquid corrections. Let us 
first consider the singlet s-paired isotropic Fermi liquid. The self-consistent system of 
equations which substitute the usual gap equation takes the form: 

2T E 
A = A A louD dE I,' dx  (tanh E+ + tanh - - 

2 

2T I: = -$al ( d g  lo1 d x x  (tanh - - tanh - 
E+ 
2T 

where E ,  = E 2 A x ,  A = upF + I:, x = p 0 ,  v is the superfluid velocity and a l  is the 
first spinless Landau amplitude, the same as that involving the effective mass formula. 
Note that only this amplitude appears to be important with respect to the velocity field 
in the isotropicsystem, provided that thespontaneous breakdownin rotational symmetry 
is not considered. These non-linear equations cannot be solved analytically in the general 
case. Nevertheless, in the T = 0 limit both integrals in equations (26) and (27) can be 
solved, and we then obtain a system of algebraic equations: 

A = AA{ln 2 0 ,  - @ ( A  - A )  In A + @ ( A  - A ) ( A 2  - A2)lI2 /A 

- @(A - A) ln[(A2 - A2)l l2  + A ] }  (28) 

(29) I: = - a l @ ( A  - A ) ( A 2  - A 2 ) 3 / 2 / A 2  

with l/A = 1n(2wD/Ao), A .  = A(T = 0 ,  U = 0). Even though this system also turns out 
to be unmanageable, some characteristic points can be determined analytically: 

(i) if A + 0 (or even A > A only) then A = Ao;  
(ii) if A + 0 then A = eA0/2 and, on the other hand, A + A ,  = vpF/(1 + a l ) ;  thus 

(iii) A = A. and A = Ao. 

Numerical methods have been employed to solve equations (28)-(29). The solutions 
A ( v )  for several values of a l  are plotted in figure 12. The curve A(u)  for a l  = 0 coincides 
with the solution A ( A )  of equation (28), which is independent of al., This solution was 
further transformed by renormalisation of abscissa according to equation (29) to obtain 
thevarious Landau parameter curves. It is important to note that at a l  = -3 the topology 

U ,  = (1 + al)eAo/2pF is the velocity at which the gap A tends continuously to zero; 
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PFv/Ao 

Figure 12. Gap A with respect to U for several values of the Landau parameter al ( T  = 0).  

7 w 0 ~ " ' " ' ~ ' '  

Figure 13. Mass operator 2 with respect to U for several values of the Landau parameter a, 
( T =  0). 

of A(u) solutions changes. For al > -3 we deal with single-value non-zero functions 
A(u), C(u) ,  while for -1 < al < -d these functions are double-valued in certain parts 
of the area of determination (see also figure 13). The critical value al = -3 has been 
determined by applying the bifurcation-type condition to the non-linear system of 
equations (28) and (29) for T = 0. More generally, at arbitrary temperatures the bifurc- 
ation condition assumes the form (in the limit A + 0): 

[ loffi dq (f [tanh(q + a) - tanh(q - a)] - 

x ( loffi d y  lo1 dx [cosh-'(q + ax) - cosh-'(q - ax)] - = 0 (30) 7 j' 

cosh(E + A ) / 2 T  
cosh(E - A ) / 2 T  

I: = - alup,/(l + a1) where a = A/2T.  (32) 
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1 
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01 01 

Figure 14. Coordinates of the tricritical point on 
the T ,  U plane with respect to the Landau par- 
ameter a,. 

Figure 15. Critical values of U with respect to a, 
(the superfluid-normal phase transition) and U,, 
with respect to al .  

The solution of the above system enables determination of the tricritical point 
coordinates versus al ,  and the appropriate curves are plotted in figure 14. At this 
tricritical point the superfluid-normal phase transition changes order; first order for 
0 s T < T* and second order for T* < T S T,. 

For the first-order phase transition case, the free energy needs to be evaluated 
to determine the critical superfluid velocity. According to the Feynman method the 
appropriate free energy takes the form: 

E, 1 joA d A ’ A’ lom d lo1 d x [ -$ (t anh 2~ + tanh - - - 
2TE2 - FN,u = - - 4 

1 1 A a1 1 + a 1  * 
X (cosh2(E+/2T) +cosh2(E-/2T))] - 6 ~ ( v p F + ’ - )  a1 

( 3 3 )  

where Fs,u and FN,” are free energies of the superfluid and normal phases, respectively 
(both for non-zero superfluid velocity). At T = 0 the above expression resolves itself to 
the formula: 

A2 A* ( A 2  - A2)3/2 1 a1 
3A 3 1 + a 1  

FS,u - FN,u = - A [ - - +- - @ ( A  - A) 
2 2 3  

The resulting critical velocity versus a l  is presented in figure 15 (for T = 0). The part 
AB (i.e., for -1 < a l  < -9) of the v,(al) is determined by U, = [#(l + a1)]1/2 AO/pF. The 
part BC (for -9  < a l  < -4) is not governed by any analytically given dependence (it is 
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found numerically). The third part (for a l  > 4) corresponds to the dependence U ,  = 
(e/&+) (1 + a l ) ,  and is related to the second-order phase transition. 

Let us now calculate the current in the system considered: 

2T p f m v  Ps P G(io , ,p )  = - U  = - - j ,  
j , = y X - - - -  p , u  m m mu ( 3 5 )  

where G is the Matsubara Green function, 

2T PF Pn j , ,  = - - ~ - p G ( i w , , p )  = - U  a P > V  m m 

and 

is the density. These expressions form the usual hydrodynamic description of the two- 
component system, where pn, p, correspond to densities of normal and superfluid com- 
ponents, respectively. On the other hand, one can note that 

j n  = -(P/”PF) [(I + ai >/a1 I Cd. 

Ps = Pi1 + [(l + a l > / a l l  C/UPF}. 

(36) 

(37) 

Hence the determination of 2 yields the evaluation of pn as well as p,, i.e., 

Typical shapes of C are plotted in figure 13. Note that according to the definition of A ,  
A = upF + 2 ,  one can rewrite equation (35) as 

It is important to observe that the current j, (i.e., superflow in the laboratory coordinate 
system) depends on a l  viaA only, since C/a l  is a function of A. Bearing in mind that the 
critical depairing superflow is defined as the maximal value of j, (which is obtained at 
A,,, according to dj,/dA = 0) one can state that the critical depairing superflow is not 
affected by a,, unless U,, > U,, where U ,  is the critical velocity (at which the transition to 
normal phase takes place) and U,, is the bare velocity corresponding to A,, (suitably to 
a l ) .  This last correspondence is governed by 

UscPF = - ( C / a l >  (39) 
Thus the function u,,(al) turns out to be linear. To be specific, let us now consider the 
T = 0 limit, when equation (38) attains the form: 

j, = (p/mpF){A - @(A - A)[(A2 - A2)3/2/A2]}. (40) 
This function is plotted in figure 16, and A,, = 1.03A0, is, = l.O1(pAo/mpF). Hence at 
T = 0 equation (39) has the form 

u,,p,/A0 = 1.03-0.02a1 

as shown in figure 15. From this figure one can notice that the line u,,(al) intersects the 
curve u,(al) at point D (i.e., a l  = -0.32). Thus for -1 < a l  < -0.32 we have U, < U,, 

and the determined jsc cannot be attained, since the transition to normal phase (of first 
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Figure 16. Superflowj, with respect to A ( T  = 0). Figure 17. Critical depairing superflow jsc with 
respect to a,. 

order) takes place earlier. The resulting critical depairing superflow is plotted against a l  
in figure 17. 

The analogous consideration can be carried out for the other kind of pairing. Of 
special interest is to present the appropriate results for p-SFL, since the local limit for 
orbital magnetic field action coincides with superflow action for the neutral system and 
thus suits the description of superfluid 3He. Let us consider the gap parameter in the 
form given byequation (12) where qindicates the unit vector in the direction of superfluid 
velocity U. The gap and the mass operator equations have the form (Vollhardt eta1 1980): 

(41) 2T 
A1 =Alg12/omdg/o d x ( 1 - x 2 ) -  tanh-+tanh- E ,  

E ’ (  2T 

1 

2T 

1 

A2 = A2212 Iow d g  Io dx 2x2 

2T 
I: = -3al [ d c  I,’ dx  5 (tanh r E+ - tanh - 

(43) 

where E*= E IfI Ax, A = upF + I: and E = ( E 2  + A:(l - x2) + A;x2)lI2. This system 
cannot be solved analytically. Let us now discuss its solution at T = 0 K. In this limit the 
equation system is also unmanageable, although both integrations with respect to and 
x can be explicitly performed. Similar to the Pauli depairing action, we find here also the 
phase transition between the BW anisotropic state (with A1 f 0, A2 f 0) and the 2~ 
planarstate(withA, # 0, A2 = 0). Infigures18and19thegapsAl,A2andmassoperator 
I: are plotted as functions of ‘dressed’ superfluid velocity A = upF + E, at T = 0. The 
distinct behaviour here, in comparison with the Pauli depairing picture, (cf. figure 4) is 
remarkable in that (1) the 2~ gap parameter is dependent on the superfluid velocity, and 
(2) the shapes of the A,(A) and A,(A) curves are distinct compared with A,(H) and 
A 2 ( H ) .  We have examined the phase transitions B W - 2 ~  and 2~-normal with respect to 
their order and determined that a l  = 0.966 is the position of the tricritical point (at T = 
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Figure 18. Order parameters A ,  and Az for BW anisotropic and ZD states with respect to A 
( T =  0). 
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Figure 19. Mass operators for BW anisotropic and ZD states with respect to A ( T  = 0).  
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0) for the phase transition BW-ZD. For - 1 < a, < 0.966 this transition is first order, while 
for a l  > 0.966 it is second order. For the zD-normal phase transition the tricritical point 
is at T = 0 for a, = -4 (for -1 < a l  < -1 the phase transition is first order and for 
a, > -4 second order). 

As in the case of S-SFL, the first-order phase transition to 2~ or normal states can 
hamper the depairing superflow to attain its maximal value for BW and ZD states, respect- 
ively. The critical superflows for 2~ and BW anisotropic states are plotted in figure 20 as 
functions of the Landau parameter a,  (at T = 0). 

Although the results obtained contradict the statement (Vollhardt et a1 1980) that 
the critical superflow is not at all affected by the Landau interaction, in the case of 3He 
the dependence presented above turns out to be insignificant since for 3He, a l  = 2.01 
(at zero pressure) and a,  = 5.22 (at melting pressure), i.e., they are in the region of 
values within which the dependence j sc (a l )  disappears. 

6. Final remarks 

As has already been mentioned, the paramagnetic critical phenomena described in §§ 2- 
4 cannot be applied to a description of real metallic superconductors, since the orbital 
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01 

Figure 20. Critical depairing superflows for BW anisotropic and 2D states ( T  = 0). 

depairing action of the magnetic field usually exceeds the action of the Pauli term (in the 
framework of the London limit at least). The Pauli limiting field in the calculation of the 
upper critical field for type I1 superconductors is partially justified, however, since the 
local limit is not a good approach in the mixed phase and the coherence length is no 
better for the spatial scale. Moreover, in some special materials one can expect an 
enlargement of the effective Bohr constant due to the exchange interaction of electron 
spin with the admixture spins. Such a situation is believed to be realised in the ferro- 
magnetic rare earth ternary compound ErRh4B4. Fujita et a1 (1984) have applied the 
paramagnetic theory of BCS gas to the 4f moment system and fitted the H,,(T) curve 
along the a axis for ErRh4B4 (experimental curve after Grabtree etall982). The BCS gas 
model leads, however, to a discrepancy between theoretical and experimental values of 
T*,  i.e., (T*/Tc),heor = 0.556 while (T*/TC),,, = 0.425. 

In order to remove this discrepancy let us include the quasi-particle interaction in 
the SFL theoretical framework lifted suitably to include the s-f exchange interaction. The 
appropriate procedure (similar to that of Fujita et a1 1984) resolves itself to an additional 
renormalisation of the effective magnetic field 

H = hexm( T )  + Z (44) 
where 

a(T) = + [436 -k I(gJ - l)/NgJpi]Xf(T)* 
Here l is  the s-f interaction constant, gJis the LandCg-factor, Nis the number of magnetic 
ions per unit volume, he, is the external DC magnetic field (in direction of the a-axis for 
ErRh4B,). The magnetic susceptibility of a magnetically polarisable medium of a 4f 
local-moment system is given by the Curie-Weiss formula: 

xf(T) = N(gJpB)2J(J + 1)/3(T- TM) (45) 
where T M  is the ferromagnetic transition temperature a n d l  is the total angular momen- 
tum. This magnetic field renormalisation yields an overall bell-shaped critical field curve 
obtained via equations (1) and (2) (with Hgiven by equation (44); cf. figure 21). To fit 
the position of the cross-over point on the H,, curve (point P in figure 21) bo is chosen 
to be 0.24 since, for this value of interaction constant, T* coincides with its experimental 
magnitude (cf. figure 2). From the curve h*(bo) (cf. figure 2) it is possible to determine 
a suitable H* and further via equations (44) and (45) one can find Z = 70 K provided &, 
JandNholdthevalues:gJ= 1.2,J = 7 . 5 , N =  9.62 X 1012atomscm-3(forZ= 70K,he, 
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T / T ,  

Figure 21. The upper critical field H,,(T) for 
ErRh4B4, a-axis. Dots represent experimental 
data after Grabtree ef a1 (1982). Full curve PR 
(broken curve RS) corresponds to the second- 
(first)-order phase transition. The line (PR’S) 
corresponds to H,, after Fujita et a1 (1984). 

coincides with 1.44 kOe). The curve in figure 21 is plotted for these parameters. The full 
curve PR and broken curve RS in figure 21 correspond to the second- and first-order 
phase transitions, respectively; the point R is the tricritical cross-over point. The curve 
PRS, even though it possesses the typical bell shape and fits with experimental data in 
the first-order phase transition region, does not coincide with experimental curve in the 
second-order transition region. The inclusion of a finite electronic mean path via one 
more parameter 1/rs0 (arising from spin-orbit interactions) can diminish this dis- 
crepancy, since l/rso changes the critical field in the distinct manner of Landau inter- 
actions (Bruno and Schwartz 1973). Note, however, that inclusion of spin-orbit 
scattering decreases the value of T* (Bruno and Schwartz 1973), so in this case bo should 
be taken to be smaller than 0.24; this value can be treated as the upper limit for spin- 
exchange interaction constant for ErRh4B,. 

With regard to other applications of the above consideration, neutral S-SFL is an ideal 
model with which to describe the hypothetical superfluidity of 3He in 3He-4He when 
the bosonic medium makes singlet pairing more convenient than the triplet one. The 
experimental possibility of detecting the appropriate transition is nevertheless com- 
plicated by its extremely low critical temperature (theoretically estimated to vary 
between lo-, K and K; cf. Ivanova and Mejerovich 1986). Moreover, for a dilute 
mixture of 3He (its limiting concentration at T = 0 is approximately 6.5%), bo is given 
by 

bo = (2nah2)/m* (46) 
where a (the mean free path of an 3He atom) is of the order of 0.5-1.5A at 3% 
concentration, and m* is the effective mass of a 3He quasi-particle. Thus bo is small and 
positive, which should make the paramagnetic behaviour of 3He-4He mixture differ 
very little from that of a BCS gas. 
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